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Summary

This study addresses the axial compression of imperfect slender struts for large space

structures. The load-shortening behavior of struts with initially imperfect shapes and eccentric

compressive end loading is analyzed using linear beam-column theory and results are compared

with geometrically nonlinear solutions to determine the applicability of linear analysis. A set

of aluminum-clad graphite/epoxy struts sized for application to the Space Station Freedom

truss are measured to determine their initial imperfection magnitude, load eccentricity, and

cross-sectional area and moment of inertia. Load-shortening curves are determined from axial

compression tests of these specimens and are correlated with theoretical curves generated using
linear analysis.

Introduction

The Space Station Freedom represents the first of a new generation of spacecraft whose

components will be assembled on-orbit and integrated within a large lightweight truss structure

(see fig. 1). Recent studies (refs. 1 and 2) have resulted in the selection of a 5-m erectable design

as the baseline configuration for this structure. Advanced development programs (refs. 3, 4, and

5) underway for a number of years have resulted in the fabrication of high-stiffness aluminum-
clad graphite/epoxy truss struts (see fig. 2) and the development of quick-attachment erectable

joints (see fig. 3).

The depth of the space station truss structure (5 m) was selected primarily because of stiff-

ness instead of strength considerations. Low packaged-volume constraints have dictated the

use of very long, slender struts. However, the structure is also required to withstand signif-

icant loads due to thermal gradients, spacecraft operations, and attitude control maneuvers.

Consequently, elastic stability of these slender struts is a design concern.

Previous studies (refs. 6 and 7) addressed the elastic stability of long slender struts

for general large space structure applications. This paper summarizes the results of a

study that extends this previous work and specifically addresses the effect of geometric

irregularities encountered during development of the aluminum-clad graphite/epoxy struts.

Such irregularities are common to the fabrication of long slender struts by most manufacturing

processes. The load-shortening behavior of initially curved struts with eccentric compressive

end loading is studied herein analytically using both linear and nonlinear beam theory. Results
from these analyses are compared to determine the applicability of linear analysis. Several

struts produced during development of the strut fabrication process are measured to determine

cross-sectional variations and imperfection in straightness. Finally, results from compression

tests of these specimens are correlated with results generated using linear analysis.

Symbols

A

DCDT

E

e

I

cross-sectional area

direct current differential transformer

Young's modulus

applied load eccentricity

cross-sectional moment of inertia

/,

l

l*

P

moment of inertia of cross section with no concentricity error

strut length

distance between reference points for axial shortening measurements

axial compression load on strut



G

Pep

q

qt

qITIP_X

ri

ro

t

tmin

tmax

At

U

W

Wh

Wo

x,y,z

xo

Xl

Yi

YO

Euler buckling load of strut

Euler buckling load of perfect strut

ratio of axial compression load to Euler buckling load

limit load for applicability of linear analysis

maximum load applied in compression test

inner radius of strut cross section

outer radius of strut cross section

average thickness of strut cross section

minimum thickness of strut cross section

maximum thickness of strut cross Section

difference in minimum and maximum thicknesses of strut cross section

longitudinal displacement of strut

lateral displacement of strut

homogeneous portion of lateral displacement solution

initial imperfection of strut

Cartesian coordinates

longitudinal position of first reference point for axial shortening measurements

longitudinal position of second reference Point for axiM shortening measurements

distance from centroid to center of inside surface of eccentric cross section (see

fig. 9)

distance from centroid to center of outside surface of eccentric cross section (see

fig. 9)

6 total axial shortening of strut

e magnitude of strut initial imperfection at strut midlength

Aerms percent-rms difference between measured imperfections and best-fit parabolic

curve

Analysis of Axial Shortening of Eccentrically Loaded, Imperfect Struts

The deformed shape w(x) of a strut with an initial imperfecti0n wO(x) and acted on by a

compressive axial load P applied at a distance e from the neutral axis is shown in figure 4.

The linear differential equation and the appropriate boundary conditions to determine w(x)

are given in equation (1) and are derived in ref. 8.

d2w

EI_x 2 + Pw = -P(wo + e)

where

w(0) = wq) = 0

The solution to the homogeneous portion of equation (1) is

(i)

wh =Blcos 7r +B2sin 7r (2)

L
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where B1 and B2 are determined from the boundary conditions and q, the compressive axial

load normalized by the Euler buckling load for the simply supported strut, is defined as

P P12
- (3)

q = Pe _ 2EI

The initial imperfection Wo(X) is assumed to be parabolic with a maximum magnitude of _,

and is given by

_o = 4_ - 7 (4)

Substituting equation (4) into equation (1), determining the particular solution, and

applying the boundary conditions, results in the following expression for lateral displacement

of a compressively loaded strut with a parabolic initial imperfection:

w(x) = 8e /u2qx2
_r2qx21 1)÷(_qq+e) [tan(-_)sin(-_)

(5)

For small lateral displacements, total axial shortening can be calculated by superimposing

the contribution due to uniform axial compression on that due to lateral displacement. The

axial shortening between any two arbitrary points x0 and xl is found by integrating the axial

strain between these limits. In order to represent both the effect of uniform axial compression

and the effect of lateral displacement, it is necessary to include both the linear term and the

first nonlinear term of axial strain. The equation for axial shortening is thus

L xl [du 1 (dw) 2] L xl du ! f xl (dw_ 25= o _x -#- 2 -_x dx = o -_xdx-t- 2 Jzo \ dx ) dx (6)

To determine the axial shortening of a strut with an initial lateral imperfection Wo(X)

equation (6) must be modified. In this case the total lateral displacement after application of

load is w(x) + Wo(X) (see fig. 4). Therefore, the axial shortening due to the elastic deflection

w(x) is

l ff, rd(wo+W)]2 X LXl (dwo_2" _= o -_xdx + "_ o [ -dx dx-_ o \dx ) dx (7)

The linear strain in the first term of equation (7) is the uniform axial compressive stress

divided by the Young's modulus of the strut. Making this substitution and evaluating the first

integral gives

5= -k--A+ 7 o L -d-5 " dx- 2 Jxo t dx ) dx (S)

where l* = Xl - x0.

The remaining two terms in equation (8) can now be evaluated by substitution of the

parabolic initial imperfection Wo given in equation (4) and the corresponding lateral displace-

ment w given in equation (5). The following integral expression is obtained:

5 = ix-_q/2 + -_- + 2--_ ) tan 2 cos 2
o

-- co_ 7 (t_ Pl*4xl+4x 2) dx+ (9)

3



The total axial shortening of the strut can be determined by setting x0 = 0 and xl = l in

equation (9). Integration and simplification of this equation lead to the following expression:

5=e2_3211rv_-Z-_s. in(_rv/q)] 8} { 8[_rv/q - sin(_rv_)] }[l(Trv/_)3[l+cos(lrv_)] 31 +ee /_.v_[l+cos(_.v/._) ]

+e 2 _ _-v/'_[_"__v_-__:sin (_-v_) ] } Pl (10)[ 2/[1 + cos(_rv/-(])] + E-'--A

Equation (10) is the sum of four terms that make specific contributions to the axial
shortening of the Strut. The first term is due solely to the initial imperfection. The second

term accounts for the interaction between initial imperfection and load eccentricity. The third

term is due solely to the load eccentricity. Finally, the fourth term is the contribution due to

uniform axial compression.

It is common in linear imperfect strut analysis to assume a half-sine rather than a parabolic

initial imperfection shape because the homogeneous solution to the differential equation is

already of this form (see eq. (2)). Although the study is based on a parabolic initial imperfection,

a derivation of the equation for axial shortening of a strut with a half-sine initial imperfection
is presented in appendix A.

Of concern in the analysis of axial shortening of eccentrically loaded columns with initial

imperfections is the occurrence of large deflections and the importance of geometric nonlineari-
ties. The nonlinear solution for end shortening of an eccentrically loaded column with a circular

initial imperfection is presented in reference 9. This solution is inherently transcendental and

requires the use of numerical iteration routines. Consequently, it is desirable to use the lin-

ear solution presented in equation (10) for problems involving sufficiently small deflections. A

comparison of results from equation (10) with results from the nonlinear solution are presented
in appendix B. From this comparison, loads are defined where the linear solution departs from

the nonlinear solution by a specified percentage for ranges of the initial imperfection and load

eccentricity magnitudes.

TeSting of imperfect Slender Truss Struts

Eleven struts, sized for application to the Space Station Freedom truss, were tested to

determine their load-shortening behavior. Nine of the specimens were 5 m long and two of the

specimens were 7.1 in long. Before loading, each specimen was measured to determine its initial

imperfection and cross-sectional uniformity. Descriptions of the test setup and imperfection
measurements of the specimens are presented in this section. Finally, experimental load-

Shortening data are presented for each specimen and compared with analytical predictions
based on the linear analysis developed in the preceding section.

Description of Test Setup

Before testing, each specimen was mated to quick-attachment erectable joint hardware of

the type shown in figure 3, and the assembly was accurately set to length. The specimen

was mounted vertically between a hydraulic jack for load introduction and a load cell for load

measurement. This test setup is diagramed in figure 5 and shown in figure 6:: : :

Centerline shortening of each specimen was determined from direct current differential

transformer (DCDT) measurements made at two stations along the length of the specimen

(x0 and xl inches from the bottom of the specimen). These locations spanned the portion
of the strut with a uniform cross-sectional area, thus displacement measurements between

them excluded any deformation in the erectable end-joints. Displacement at the center of the

specimen cross section was calculated by averaging the readings of three DCDT's located at
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the apexes of an equilateral triangle centered on the cross section. This process eliminates

the effects of local bending rotations in the specimen regardless of the direction of rotation.

The approximate location of the measurement stations and a section view of the upper station

showing the DCDT placement are shown in figure 5. The axial shortening of the specimen

between these two stations is determined by subtracting the centerline displacement at the

upper station (DCDT's 1, 2, and 3) from the centerline displacement at the lower station
(DCDT's 4, 5, and 6).

Details of the fixture used to provide a pinned-end restraint to the specimen are shown in

figure 7. The left-hand photograph shows the lower end of the specimen, the lower DCDT

station, and the hydraulic jack. The right-hand photograph shows a close-up view of the

specimen end fixture. A special joint adaptor was attached to the node fitting portion of the

erectable joint to cause end rotation of the specimen to occur at the theoretical node center

(see fig. 3). Because of the arbitrary orientation of initial imperfections and eccentricities,
it was impossible to identify, a priori, the preferred direction of buckling of the specimens.

Therefore, it was necessary to provide an omnidirectional pinned-end restraint by incorporating

a hemispherical end on the joint adaptor and a mating hemispherical socket in the hydraulic

jack adaptor. A thin sheet of greased Teflon was inserted between these adaptors to ensure

a low-friction interface. Identical fixtures were used on both the top and the bottom of the

specimen.

The initial imperfections of the specimens were determined from lateral DCDT measure-

ments made along the strut length. Measurements were made at evenly spaced stations as

the specimen was rotated 360 ° around its longitudinal axis. The lower lateral DCDT (DCDT

9) and a series of indicator marks to locate the orientation angle around the circumference of
the specimen are shown in figure 8. An explanation of the procedure used to determine initial

imperfection magnitudes from these readings is presented in the following section.

Description of Specimens

Each specimen was measured to determine an initial imperfection magnitude and variations

in its cross-sectional dimensions. Results of these measurements are presented below.

Specimen initial imperfection magnitudes. The initial imperfection was measured at three

points along the length of the specimen: 0.25/, 0.50/, and 0.75/. To determine the imperfection

values at each point, DCDT readings were taken at 20 ° increments as the strut was rotated

about its longitudinal axis. The minimum reading was then subtracted from the maximum

reading with the result divided by two to give the imperfection value at this point. These values

for the imperfection at the three span locations were used to obtain a least-squares regression
fit of equation (4). The resulting expression for the best-fit e is given in equation (11):

2
c = -i-_(3Wl/4 + 4Wl/2 + 3w3/4) (11)

where Wl/4, Wl/2, and W3/4 are the measured values of imperfection at 0.25/, 0.50/, and 0.75/,
respectively.

To determine the quality of the parabolic curve fit of the imperfection data, the percent-

rms difference (Acrms) between the data and the best-fit parabolic curve is also calculated.

These results are presented in table I along with the specimen lengths and the location of the

upper and lower stations for measuring axial displacement (see fig. 5). The parabolic curve fit

approximations to the actual imperfection shape of the specimens were found to exhibit rms

errors between 1.8 and 26 percent.



Table I. Specimen Lengths and Initial Imperfections

I Specimen l, in. x0, in. xl, in. l*, in. _, in. Aenns, %

1

2

3

4

5

6

7

8

a9
10

11

196.8

196.8

196.8

196.8

196.8

196.8

196.8

196.8

196.8
278.4

278.4

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.5
8.1

8.1

188.7

188.7

188.7

188.7

188.7

188.7

188.7

188.7

186.9
270.3

270.3

180.6

180.6

180.6

180.6

180.6

180.6

180.6

180.6

178.4
262.2

262.2

0.071

.307

.187

.232

.215

.145

.265

.214

.075

.681

.382

26.0

8.8

16.6

8.0

10.8

10.7

10.0

1.8

15.0

3.2
9.6

aThe values of x0 and Xl for specimen 9 are different from thOse for the other 5-m struts

because O_ a manufacturing error =that necessitated the addit{on of a tubular aluminum
extension to one end of the specimen.

Specimen cross-sectional variations. Ideally, the inner and outer layers of aluminum in

the strut cross section (see fig. 2) should be concentric and of constant thickness as should the

layer of graphite/epoxy. The nominal design values for the thicknesses of each aluminum layer,

the thickness of the graphite/epoxy layer, and the outer radius are 0.006, 0.060, and 1.066 in.,

respectively .... "....

The specimen cross sections showed a lack Of concentricity between the inner and outer

layers of aluminum and thus, significant variations from the nominal dimensions. This lack of

concentricity results in a shift of the centroid of the cross section, and thus, a reduction in the

moment of inertia and the introduction of a load eccentricity. In general, it was observed that

the cross-sectional imperfections were aiigned with the initial imperfection bow in the strut

such that all effects (load eccentricity, reduced cross-sectional moment of inertia, and initial

strut bow) were additive in degrading the load-shortening performance of the strut.
Measurements of outside diameter and wall thickness were made at various orientations

around both ends of each specimen and these values were used to derive average cross-sectional

properties. For the purpose of these calculations, the three-layer, two'material, annular cross

section was assumed to be a single-layer, one-material, annular cross section with an effective

Young's modulus to be determined from experiment.

A strut cross section in which the inner and outer circular surfaces are not concentric is

shown in figure 9. The axes shown are centroidal and the distances to the centers of the inner

and outer circular surfaces from the origin are defined as Yi and yo, respectively. The radii

of these inner and outer surfaces are ri and ro, respectively, and the minimum and maximum

thicknesses are tmin and tmax, respectively. The difference in the minimum and maximum

thicknesses is given by

At = tmax - tmin ----2(yi - Yo)

The average thicknessl t, is defined to be

(12)

1

t = _(tm__x + tmin) (13)

From the definition of the centroid of a planar region, it follows that

/Area y dA = 0 =_ yor 2 = yir_ (14)
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During manufacture, the inside of the ends of each tube was machined on a lathe to accept

a tapered, bonded adaptor fitting for the erectable joint hardware. The center of machining

was the center of the outside surface of the strut cross section. Therefore, after assembly, the

center of the hemispherical end of the joint adaptor fitting (see fig. 7) was coincident with the
center of the outside surface. Accordingly, the center of the outside surface was assumed to

be the point of application of the load, and therefore the load eccentricity e is given by the
following equation (see fig. 9):

e = yo (15)

Substituting equations (12) through (14) into equation (15) and simplifying gives the

following expression for load eccentricity in terms of the outer radius, the average thickness,
and the difference between the maximum and minimum thicknesses:

At (r2o - 2rot + t 2)

e= 2(2rot_t2) (16)

To quantify the concentricity effect, the eccentricity given by equation (16) can be expressed

as a function of the concentricity error (Yi - Yo). Inserting equation (12) into equation (16) and
substituting the nominal value of ro/t .._ 14.8 gives

0
e= (2_ - 1) ,_6.6(yi-Yo) (17)

Thus the resulting load eccentricity is over six times greater than the concentricity error. This

illustrates the importance of maintaining concentricity (or equal material distribution around
the strut circumference) during manufacture of the struts.

The minimum moment of inertia I for the eccentric cross section can be calculated by
performing the appropriate area integral. The result is

I = fArea y2d A = 7r_4(r 4 -r 4) -Tr (y2r2- y2or2o) (18)

The first term in this expression is the moment of inertia of the concentric cross section, and
the second term is the reduction due to deviation from concentricity.

Substituting equations (12) through (16) into equation (18) and simplifying gives the

equation for cross-sectional moment of inertia in terms of the outside radius, the average
thickness, and the applied load eccentricity. This equation is

[ ] [ ]I = _ [r4o- (ro- t) 4] -7re2r2o r2 1 = Ip- 7re2r 2 r2° 1
(to - t)2 (to t)2

(19)

where Ip is the moment of inertia of the "perfect" cross section (one with no concentricity
error). A concentricity error does not affect the area of the cross section, which is given by

= (ro-,)
Values for t, At, and ro were determined from averaged measurements made at each end

of each specimen and values for e, I, Ip, and A were calculated for each specimen using
equation (17), equation (11), and equation (12). A summary of these measured and calculated

values as well as a list of the nominal design values for comparison are presented in table II.
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Table II. Average Cross-Sectional Parameters for Test Specimens

Specimen ro, in. t, in. At, in. e, in. I, in4 Iv, in4

Nominal

1

2

3
4

5

6

7

8

a9

10
11

1.066

1.070

1.072

1.070

1.069

1.066

1.064

1.062

1.069

1.065
1.065

1.062

0.072

.089

.088

.086

.085

.091

.087

.074

.092

.093
.084

.084

0.000

.021

.014

.016

.015

.015

.026

.017

.027

.027
215

.012

0.000

.056

.037

.044

.042

.038

.070

.055

.068

.067

.042

.034

0.248

.300

.299

.291

.288

.303

.287

.249

.306

.306

.281

.280

A, in 2

0.248 0.466

.302 .575

.301 .568

•293 .555

.289 .548

.304 .584

.291 .558

.251 .477

.310 .591

•309 .595

.283 .540

.281 .541

aBecause of problems in the manufacture of specimen 9, it was possible to make these
measurements at only one end; therefore, the values given do not represent a strut average.

On the average, these specimens were approximately 20 percent thicker than the nominal

design, with as much as a 30-percent variation in thickness around any given cross section.

However, the presence of errors in concentricity caused only 1-2 percent reductions in the

moment of inertia. In the following section, results are presented from axial compression tests

and analysis which illustrate the effect of these dimensional irregularities on the load-shortening
behavior of the struts.

Results from axial compression analyses and tests. A value for the effective Young's modulus,

E, for each specimen was determined by considering the initial slope of the experimental load-

shortening curve of the specimen. With this value and values for the dimensional parameters

given in tables I and II, the specimen's theoretical load-shortening curve can be generated by

solution of equation (9) or equation (10) for a series of load values. Equation (10) gives the

axial shortening between the ends of the strut, and therefore cannot be used for comparison

with the experimental data. Consequently, theoretical load-shortening curves were generated

by numerical integration of equation (9).

The experimental load-shortening curve for each specimen was determined using the

compression test setup previously described. During each test, the specimen was subjected

to a slowly incre/_sing compressive load while a real-time plot of the load-shortening curve was

monitored. Data were taken at equal time intervals until the slope of the load-shortening curve

became nearly zero. Data from these tests are plotted in figures 10 through 20 for specimens 1

t_ough-ili respect-[vely: :

The initial slopes of these curves, EA/I*, were used to determine experimentai Values for

E. These values are presented in table III for each specimen along With calculated values

for the Euler buckling load (Pc = 7r2EI/12); the perfect cross section Euler buckling load

(Pep = 7r2EIp/12); and the normalize d maximum loads achieved in each test, qmax- A

comparison of Pe and Pep in table III illustrates the small reduction in I (and consequently Pc)

resulting from lack of concentricity. Differences in the cross-sectional dimensions and effective

Young's moduli of different specimens led to 10 percent variations in Euler buckling loads and

effective axial stiffnesses.



TableIII. ResultsFromAxialCompressionTests

Specimen E, psi Pe, lb Pep, lb qmax ql

1

2

3

4

5

6

7

8

9

10

11

27.3 × 106

27.6
28.9

28.8

25.7

29.2

32.9
27.8

26.7

27.7

27.7

2O88

2108

2141

2106

1979

2134

2083

2166

2080

1011

1014

2102

2122

2156

2113

1986

2164

2100

2194

2100

1018

1018

0.90

.80

.86

.83

.89

.72

.83

.87

.91

.77

.84

0.96

.93

.95

.94

.94

.95

.93

.94

.96

.90

.94

Also included in table III are load values qt at which the linear load-shortening analysis

differs from the nonlinear analysis by 2 percent. These values were determined from analyses

presented in appendix B. None of the specimens were tested to a load level above these limiting

values (qmax < ql)" Thus, geometric nonlinearities were unimportant, and the linear load-

shortening analysis presented in equation (9) and equation (10) is applicable.

The theoretical load-shortening curves as determined from numerical integration of equa-

tion (9) are shown in figures 10 through 20. Good agreement is seen between the theoretical

and experimental curves for all of the specimens except 4, 6, and 9. The specimens that had the

greatest rms error in the parabolic approximation of their imperfections (specimens 1 and 3)

showed reasonably good agreement between the theoretical and experimental load-shortening

curves. Therefore, the poor agreement for specimens 4, 6, and 9 may be due to variations in

their cross-sectional dimensions near the midspan. The cross-sectional dimensions in table II

were determined from measurements made near the ends of the specimens (only one end for

specimen 9); thus, any significant cross-sectional variations near the middle of the strut would

not be represented in these measurements.

Initial imperfections and errors in cross-sectional concentricity significantly degraded the

load-shortening behavior of all specimens as evidenced by the fact that all the specimens

deviated markedly from linear elastic behavior characteristic of a corresponding perfect strut.

This implies that control of cross-sectional concentricity and strut straightness is very important

to achieve satisfactory performance from long slender truss struts.

Concluding Remarks

The results of a study of the load-shortening behavior of initially imperfect struts under

the action of eccentrically applied compressive loads have been presented. Linear analysis has

been performed and compared with experimental results from 11 developmental aluminum-clad

graphite/epoxy truss struts. These comparisons showed good agreement for most specimens.

The specimens were measured to determine deviations from straightness and nominal cross-

sectional dimensions. These measurements were used to calculate values for initial imperfection

magnitude and load eccentricity, as well as cross-sectional area and moment of inertia. It was

determined that the load eccentricity resulting from an error in cross-sectional concentricity is

over six times greater than the concentricity error.

Deviations from concentricity coupled with initial imperfections in straightness led to

significantly degraded load-shortening behavior for all specimens tested. This illustrates the

importance of maintaining concentricity and straightness during the manufacture of the struts.

9



Appendix A

Axial Shortening of an Eccentrically Loaded Strut With a Half-Sine Initial

Imperfection

The half-sine initial imperfection given in equation (AI) is commonly selected for linear

imperfect strut analysis because it is the same shape as the homogeneous solution to the

governing differential equation (see eq. (1)). The solution for axial shortening of an eccentrically

loaded strut with this initial imperfection follows the same steps as outlined for the parabolic

initial imperfection.
• "fix

Wo = e sin-- (hl)
l

Substituting equation (A1) into equation (1), determining the particular solution, and

applying the boundary conditions results in the following expression for lateral displacement
of an eccentrically loaded strut with a half-sine initial imperfection:

qe sin(_X) e (-_- _v_/)w(x) - 1 ---q -'_ + cos(Trvf_/2 ) cos - - e
(A2)

Equation (8) is evaluated by substitution of the half-sine initial imperfection Wo given in

equation (A1) and the corresponding lateral displacement w given in equation (A2). The

following integral expression is obtained for the axial shortening between any two points x0
and xl of the strut:

_- 1 l]cos2(?)+ [( 1 sin )cos(?)5 _ _o (?)2 [(1 _ q) 2 - q)-_V"_/2) J l

[ erv,'_ 12 sin2 (Tr_ _'vf_x) } dx + Pl* (A3)
+

I cos(.v_/2) J __ l E---A

The total axial shortening of the strut is determined by setting xo = 0 and Xl -- l (thus

l* = l) in equation (A3). The result is

6=e214/(11r2- q)2 zr2]_ +ce [l(l[ .2_-q]_q)2j +e2 { 7rv_ [Trv_ - sin(Trv/_)]}2l[-1+ c_s(-_] + E----AP_ (A4)

Recall that e is the load eccentricity, e is the mMlengti_ magnitude of the half-sine

imperfection, and q is the applied compressive load normalized to the Euler buckling load.
Equation (A4) is the sum of four terms similar to those in equation (10). In fact, the third
and fourth terms are identical to those in equation (10) because they account for the effects of

load eccentricity and uniform axial compression, which are unchanged fromthe first case. The

different assumptions for initial imperfection shape account for the differences in the first two

terms of equation (10) and equation (A4).

• T:
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Appendix B

Importance of Geometric Nonlinearities

A recent study (ref. 9) has used the nonlinear formulation for axial compression of a

strut (ref. 8) to investigate the load-shortening behavior of an eccentrically loaded strut
with a constant-curvature (i.e., circular) initial imperfection. For small initial imperfection

magnitudes, the parabolic shape presented in equation (4) closely approximates the circular

shape assumed in the nonlinear analysis of reference 9. Thus, comparison of the linear solution

presented in equation (10) with the corresponding nonlinear solution from reference 9 will

identify the importance of geometric nonlinearities.

Linear analysis predicts larger deformations for large loads than those predicted with

nonlinear analysis. From equation (10), it is evident that as q approaches 1, linear analysis

predicts infinite axial shortening. However, nonlinear analysis predicts finite axial shortening

for q = 1. The error in linear analysis increases with increasing load. Therefore, a load ql at

which the axial shortening from linear analysis is in error by a specified amount is defined as

the limit of applicability of linear analysis.

Values for ql can be determined for ranges of the strut parameters e/l and e/l and general

plots of this limiting load can be constructed. Figure 21 presents a carpet plot of ql for an

allowable error in linear analysis equal to 10 percent, and figure 22 presents a similar plot for

an allowable error equal to 2 percent. These plots can be used to readily determine the limit of

applicability of linear analysis for specimens with given values of e/1 and e/l. All experimental
load-shortening data analyzed in the present study fall below the 2-percent error limit for the

respective specimen. Therefore, errors in linear analysis due to geometric nonlinearities are less

than 2 percent.

11
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Figure 4. Axial compression of an initially imperfect column with eccentrically applied end loads.

16



l-x 1

:i
A

I |

!

DCDT's

1,2,3

A

DCDT 7

DCDT 8

DCDT 9

DCDT's

Load cell

DCDT 1
Test

specimen

,.........

::.i_iii!ii!iiiii

DCDT 2 DCDT 3

Section A-A

DCDT measurement plate

m

Erectable joint

Hydraulic jack

Figure 5. Diagram of test setup.

1T



_ DCDT's 1,2,3

DCDT's 4,5,6

p

Load cell

DCDT's 7,8,9

Hydraulic jack
t

Figure 6. Test setup.

18 ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH



ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

LU

19



O0

c_

- ii!

2O ORIGINAL PAGE

_ ^CK AND WHITE PHOTOGRAPH



Theoreticalloadcenter

(center of machining of
strut ends)

Centroid

y

t max tmin

Figure 9. Nonconcentric strut cross section.

P, Ib

2200

2000

1800

1600

1400

1200

1000

8OO

600

400

200

Pep = 2102 Ib

, I , I , I

.01 .02 .03

Specimen 1

I, in. (m) ........ 196.8 (5)
ro, in ............. 1.070

t, in .............. 0.089
e, in .............. 0.056

E, in .............. 0.071

..... Theoretical

Experimental

I _ I , l

.04 .05 .06

5, in.

Figure 10. Load-shortening curve for specimen 1.

21



P, Ib

2200

2000

1800

1600

1400

1200

1000

800

6OO

400

2OO

Pep = 2122 Ib

_men 2

l l, in. (m) ........ 196.8 (5)
,_" ro, in. ........... 1.072
f

/," ,,io............0.088

/" e, in .............. 0.037

" e, in .............. 0.307

/" ..... Theoretical

......... Experimental

, I , I , I , I , I , I
.01 .02 .03 .04 .05 .06

5, in.
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Figure 12. Load-shortening curve for specimen 3.

22

=



P, Ib

2200

2000

1800

1600

1400

1200

1000

8O0

600

400

200

0

Pep = 2113 Ib

Specimen 4

l, in. (m) ........ 196.8 (5)
ro, in ............. 1.069

t, in .............. 0.085
e, in.............. 0.042

E, in.............. 0.232

..... Theoretical
Experimental

.01 .02 .03 .04 .05 .06

8, in.

Figure 13. Load-shortening curve for specimen 4.
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P, Ib

2200

2000

1800

1600

1400

1200

1000

800

600

400

200

Pep = 21O0 Ib

, I , ! , I A I
0 .01 .02 .03 .04

8, in.

Specimen 9

l, in. (m} ........ 196.8 (5)
ro, in ............. 1.065

t, in .............. 0.093
e, in.............. 0.067

_, in.............. 0.075

..... Theoretical

Experimental

, I , l
.05 .06

Figure 18. Load-shortening curve for specimen 9.

25



P, Ib

2200

2000

1800

1600

1400

1200

1000

800

600

4OO

20O

Pep = 1018 Ib

" l, in. (m) ....... 278.4 (7.1)

/ ro,L .....2o, 
/. ..........o

,/ e, in.............. 0.042

¢, in.............. 0.681

// ..... Theoretica!

Experimental

, I , I , I , I , I _ , I
.01 .02 .03 .04 .05 .06

5, in.

Figure 19. Load-shortening curve for specimen 10.
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Figure 20. Load-shortening curve for specimen 11.
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